Runtime adaptation of an iterative linear system
solution to distributed environments

Masha Sosonkina

Department of Computer Science, University of Minnesota, Duluth,
320 Heller Hall, 10 University Drive, Duluth, Minnesota 55812-2496
masha@d.umn.edu

Abstract. Distributed cluster environments are becoming popular plat-
forms for high performance computing in lieu of single-vendor supercom-
puters. However, the reliability and sustainable performance of a cluster
are difficult to ensure since the amount of available distributed resources
may vary during the application execution. To increase robustness, an
application needs to have self-adaptive features that are invoked at the
runtime. For a class of computationally-intensive distributed scientific
applications, iterative linear system solutions, we show a benefit of the
adaptations that change the amount of local computations based on the
runtime performance information. A few strategies for efficient exchange
of such information are discussed and tested on two cluster architectures.

1 Introduction

Distributed environments are now widely used for computationally-intensive sci-
entific applications. However, efficiency and robustness are still difficult to at-
tain in such environments due to the varying distributed resource availability
at any given time. For example, the “best effort” interconnection networks have
no mechanism to satisfy application communication requirements all the time.
Thus an application needs to have its own adaptive mechanisms. Applications
that adjust their quality of service (i.e., the computation and communication de-
mands) to the state of interconnecting network and computing nodes are quite
common in multimedia already. In scientific computing, however, the concept
of self-adaptation is rather new. For scientific applications with adaptation fea-
tures, distributed environments may win a performance battle over single-vendor
supercomputers, since adaptation makes scientific computing more robust and
fault-tolerant.

Linear system solution is usually the most computationally-expensive part of
many high-performance computing applications. Thus focusing on its adaptive
features will affect significantly the overall performance of applications. Large-
scale sparse linear systems are often solved using iterative solution techniques,
which find an approximate solution given a desired accuracy. These techniques
have high degree of parallelism and are easy to implement. Here, we propose a
few adaptation strategies for an iterative linear system solution in distributed
environments. The paper is organized as follows. Section 2 outlines a general

II

framework of a parallel iterative linear system solution method. Next, we de-
scribe a few strategies for obtaining run-time information about the system per-
formance as measured by elapsed time. In section 3, numerical experiments are
provided for different cluster environments. We summarize the work in Section 4.

2 Distributed iterative linear system solution with
adaptation features

An iterative solution method can be easily implemented in parallel, yielding
a high degree of parallelism. Consider, for example, a parallel implementation
of FGMRES [4], a variation of a popular solution method, restarted General-
ized Minimum RESidual algorithm (GMRES) [3]. If the classical Gram-Schmidt
procedure is used in its orthogonalization phase, an iteration of the parallel algo-
rithm has only two synchronization points, in which all-to-all processor commu-
nications are incurred. A drawback of iterative methods is that it is not easy to
predict how fast a linear system can be solved to a certain accuracy and whether
it can be solved at all by certain types of iterative solvers. This depends on the
algebraic properties of the matrix. To accelerate the convergence of an iterative
method, a linear system can be transformed into one that has the same solution
but for which the iteration converges faster. This transformation process is called
preconditioning. With a good preconditioner, the total number of steps required
for convergence can be reduced dramatically, at the cost of a slight increase in
the number of operations per step, resulting in much more efficient algorithms.
In distributed environments, an additional benefit of preconditioning is that it
reduces the parallel overhead, and thus decreases the total parallel execution
time.

2.1 Distributed matrix representation and block-Jacobi
preconditioning

One way to partition the linear system Ax = b is to assign certain equations and
corresponding unknowns to each processor. For a graph representation of sparse
matrix, graph partitioner may be used to select particular subsets of equation-
unknown pairs (subproblems) to minimize the amount of communication and to
produce subproblems of almost equal size. It is common to distinguish three types
of unknowns: (1) Interior unknowns that are coupled only with local equations;
(2) Local interface unknowns that are coupled with both non-local (external)
and local equations; and (3) External interface unknowns that belong to other
subproblems and are coupled with local equations. Thus each local vector of
unknowns x; is reordered such that its subvector u; of internal components is
followed by the subvector y; of local interface components. The right-hand side
b; is conformly split into the subvectors f; and g; , i.e.,

) o0
) v) g9i)

II1

When block-partitioned according to this splitting, the local matrix A; residing
in processor ¢ has the form

so the local equations can be written as follows:

(5 &))+ (5, lm) = (2): @

Here, N; is the set of indices for subproblems that are neighbors to the subprob-
lem 4. The term E;;y; reflects the contribution to the local equation from the
neighboring subproblem j. The result of the multiplication with external inter-
face components affects only the local interface unknowns, which is indicated by
zero in the top part of the second term of the left-hand side of (2).

The simplest of distributed preconditioners is the block-Jacobi procedure
(see, e.g., [3] and the references therein). This form of a block-Jacobi iteration,
in which blocks refer to the subproblems, is sketched next.

ALGORITHM 1 Block Jacobi Iteration:
1. Obtain external data y; ezt
2. Compute (update) local residual r; = (b — Az); = b; — A;z; — ZjeNi E;jy;
3. Solve Aiéi =T
4. Update solution x; = x; + 6;.

The required communication, as well as the overall structure of the routine, is
identical to that of a matrix-vector multiplication. In distributed environments,
the block-Jacobi preconditioner is quite attractive since it incurs no extra com-
munication and becomes less expensive with increase in processor numbers. How-
ever, it is well-known that, in this case, the effect of block-Jacobi on convergence
deteriorates requiring more iterations to converge.

2.2 Adaptive strategies

For the local preconditioning strategies, such as block-Jacobi, the amount of
work each processor accomplishes in the preconditioning application is different
and depends on the properties of the local submatrices. Since the properties of
the local submatrices may vary greatly, the times of the preconditioning phase
may also differ substantially leading to a load imbalance among processors. Load
imbalance may also occur under the unequal resource conditions in one or more
processors. We assume that the unequal resource condition arises when nodes dif-
fer in computational power either due to to their hardware configuration or due
to competing loads that consume a part of node resources. For unbalanced local
loads, when the processor synchronizations take place (in the orthogonalization

v

phase of FGMRES and during the matrix-vector product), the processors with
small preconditioning workload must wait for the other processors. One way to
avoid this idling is to force all the processors to spend the same time in the pre-
conditioning application. The time may be fixed, for example, based on the time
required by the processor with the largest workload to apply a preconditioning
step. The rationale is that it is better to spend the time, which would be wasted
otherwise, to perform more iterations in the “faster” processors. A better accu-
racy may be achieved in “faster” processors which would eventually propagate
to others, resulting in a reduction of the number of iterations to converge.

There are several approaches to control the “fixed-time” condition for a block-
Jacobi preconditioning step (Algorithm 1) when an iterative process (e.g., GM-
RES) is used to solve the linear system in line 3. One of these approaches (tested
in [5]) is to change locally the number of inner GMRES iterations at a certain
(outer) iteration of FGMRES based on some criterion. The following iteration
adjustment parameters have been determined experimentally and applied after
each preconditioning step in processor i, (i =1,...,p):

if (A; > n§71/3) n;- = n;-,l + A;-,

where n; is the number of the inner iterations in the (next) jth iteration of

FGMRES; A;- is the number of iterations that processor ¢ can fit into the time to
be wasted in idling otherwise at the jth outer iteration of FGMRES. Specifically,

(Tmax — TH)n?

A;' = T)

where Tiay is the maximum time among all the processors and 7" is the time for
processor ¢ to perform preconditioning operations during j — 1 previous outer
iterations; n’ is the total number of preconditioning operations performed by
processor i so far. The number of inner iterations n; can be updated provided
that the limit nj, on the number of inner iterations is not reached.

The maximum time Ty, has been obtained by an all-to-all communica-
tion required by the global maximum computation. However, for the distributed
environments in which the interconnecting network has large communication la-
tency, obtaining Ty,.x may incur significant parallel overhead. It is, therefore,
desirable to use already existing communication points to exchange the timing
information, so that no separate message is issued for sharing the performance
information.

First, we explain how the communication during a distributed matrix-vector
multiplication may be exploited. The value of T¢ is appended to the message
containing the local interface unknowns sent to a neighbor. Upon receipt of
all T*(k € N;), processor i determines locally the maximum T, over all T*
and uses it in adaptation decision for the jth iteration. A disadvantage of this
strategy is that the information is exchanged only among neighbors, so there is
no knowledge of the global Ty,.. To alleviate this drawback, the computation
of Aj- has been modified to use the information only from the previous (j — 1)st
iteration.

\%

Second, a strategy that finds the global maximum time can be designed such
that no extra communication takes place. An all-to-all communication of the
FGMRES orthogonalization phase may be used to compute and disseminate
global Ti,.y. Since in the distributed orthogonalization, a global sum is com-
puted, we need to introduce a “mixed” reduction operation that determines a
vector (sum, max). Message Passing Interface [1], which we use as a communi-
cation library, permits such a mixed user-defined reduction operation.

3 Numerical experiments

The experiments have been performed on the two types of distributed architec-
tures: a cluster of 8 nodes with two Power3 (200MHz) processors connected via
Gigabit Ethernet and a cluster of 64 nodes, in a Single PentiumPro (200MHz)
processor mode, connected via Fast Ethernet. Each node of Power3 and Pen-
tiumPro clusters has 1 GB and 256 MB of main memory, respectively. Both
clusters are built in Ames Laboratory (Ames, IA). The test problem AF23560
comes from the Davis collection [2]. This problem is unstructured, has 23,560
unknowns and 484,256 nonzeros in the matrix. In the preconditioning phase,
block-Jacobi is used such that the linear system solve is handled by ILUT-
preconditioned GMRES(20) with the following parameters: 30 fill-in elements
per row in the ILUT factorization [3], ny = 5, njim = 20, and the relative accu-
racy of 1072. This accuracy is increased to 10~8 whenever n; is adapted.

Figure 1 compares the time (top) and iteration (bottom), for the follow-
ing implementations: standard block-Jacobi (Jac) and two versions of adap-
tive block-Jacobi (Jac_global_1 and Jac_local). Jac_global_1 uses a separate
global communication to gather performance information and Jac_local ex-
changes the timing information among the neighbors only. It can be seen that
both adaptive strategies are more robust than the standard algorithm since they
converge when standard block-Jacobi fails (for 8 and 10 processors). With in-
crease in processor numbers, the communication cost starts to dominate the
execution time. Thus the adaptive version without extra communication point
becomes beneficial. However, the neighbor-only balancing strategy is inferior to
the global one so the performance of Jac_local is hindered.

Next, we monitor the performance of the proposed adaptive versions under
the unequal resource conditions. In certain cluster nodes, competing loads are
introduced such that they consume a significant (constant) amount of main
memory. We choose to focus on memory resources since the performance of
scientific applications is often memory-bound for large-scale problems.

The test problem and solution parameters are taken as in the previous set of
experiments. The tests have been performed on four processors. A simple pro-
gram consuming a constant amount (512 MB) of memory (denoted as load L1)
was run on node0 of the Power3 cluster together with the distributed linear sys-
tem solution the mapping of which included node0. Similarly, a constant amount
of memory equal to 150 MB (denoted as load L2) was consumed on node0 of
the PentiumPro cluster while a parallel linear system solution was running on

VI

Matrix AF23560 — Wall clock time
400 T T T T T

Jac_local
Jac_global_1

350 Jac

w

o

=]
T

N

3]

o
T

[N

a

o
T

Pentium Pro seconds (wall clock)
5 8
o o
T T

50F '~

4 6 8 10 12 14 16 18
Processors

Matrix AF23560 — Iterations
400 g ‘ ‘ \

Jac_local
Jac_global_1
Jac

300~ b

200~ b

Iterations

100~ q

i ||

4 6 8 9 10 12 14 16 18
Processors

Fig. 1. Time (top) and iteration (bottom) comparisons of three variations of block-
Jacobi for subproblems of varying difficulty on increasing processor numbers

VII

a set of four nodes including node0. For the experiments on both clusters, Ta-
ble 1 provides the number of the outer iterations outer_it until convergence
and the total solution time total_time for the following variations of the so-
lution process: standard block-Jacobi Jac with the number of inner iterations
nty = 5, nfy = num = 20, and with unequal subproblem sizes ne_part (for
n'o = 5); Jac_local; Jac_global 1; and (for Power3 only) Jac_global 2, an
adaptive version of block-Jacobi that exchanges performance information via a
global communication in the FGMRES orthogonalization phase. To partition
a problem into unequal subproblems (the ne_part variation of standard block-
Jacobi), a graph partitioner was modified such that it takes as an input a vector
of relative sizes for each of the subproblems and attempts to produce partitions
of corresponding sizes.

We observe that, in general, adapting to the unequal memory condition, ei-
ther by an a priori matching of partition size to the extra loads or by runtime
iteration adjustment, improves performance. A drawback of an a priori size se-
lection, however, is that it is difficult to choose the relative partition sizes to
reflect the unequal resource availability, which may change dynamically. Stan-
dard block-Jacobi with nfy = nym, appears to be quite competitive on Power3
processors, since the cost per preconditioner (inner) iteration does not increase
much going from 5 to 20 iterations. All adaptive variations show comparable per-
formance. Jac_local outperforms other variations on the Power3 cluster. This
can be explained by the partition connectivity (Figure 2) of the problem and the
dual-processor architecture of the Power3 cluster nodes. Similar situation can be
seen in Table 2, which, in the column ‘2 nodes / 2 L2’; gives the timing and
iteration results on the PentiumPro cluster when both node0 and nodel have
load L2. The column ‘2 nodes / 3 L2’ of Table 2 shows the case when node0
has load L2 and nodel has 2xL2. A global strategy Jac_global_1 appears to
react better than the local strategy to varying imbalance conditions.

4 Conclusions

We have showed that parallel iterative linear system solution may need to adapt
itself when the distributed resources, such as memory, are not equal among nodes
in a distributed environment. Block-Jacobi preconditioning has been taken as
an example to dynamically balance unequal resources with the amount of local
work per processor. The dynamic adjustment of local iterations reduces the
imbalances due to different resource availability and subproblem difficulty, which
makes the linear system more robust and decreases the number of iterations to
convergence. We observed that an a priori adjustment of subdomain sizes is not
a viable alternative since both the environment and algorithm performances may
vary dynamically. It has been shown that the runtime performance information
exchange requiring no separate communications is advantageous in distributed
memory environments that have high-latency interconnects.

VIII

Table 1. The performance of block-Jacobi variations when one cluster node has amount
of memory depleted

Power3 PentiumPro

Method outer_it |time_it outer_it |time_it

Jac | n'o=5 77 87.47 77 51.75

n'o =20 30 48.98 30 62.56

ne_part 74 57.28 83 54.55

Jacobi_local 33 42.33 32 28.82

Jacobi_global_1 33 55.39 38 26.29
Jacobi_global 2 32 54.07

Table 2. The performance of block-Jacobi variations with increasing memory imbal-
ance in the nodes of the PentiumPro cluster

- = = =~

2 nodes / 2 L2 2 nodes / 3 L2

Method outer_it |time_it outer_it ‘time_it

Jac [n'o =5 77 | 66.67 77 | 99.56

Jacobi_local 33 35.54 32 49.21

Jacobi_global 1 35 38.11 33 48.72
node O node 1

~

Fig. 2. Partition connectivity and mapping for the test problem solved in four proces-

sors of the Power3 (a) and PentiumPro (b) clusters

IX

References

1. MPI Forum. MPI: A message-passing standard. Intl. J. Supercomut. Applic., 8,
1994.

2. T. Davis. University of florida sparse matrix collection. NA Digest, 1997.
http://wuw.cise.ufl.edu/ davis/sparse.

3. Y. Saad. Iterative Methods for Sparse Linear Systems. PWS publishing, New York,
1996.

4. Y. Saad and A. Malevsky. PSPARSLIB: A portable library of distributed memory
sparse iterative solvers. In V. E. Malyshkin et al., editor, Proceedings of Parallel
Computing Technologies (PaCT-95), 3-rd international conference, St. Petersburyg,
Russia, Sept. 1995, 1995.

5. Y. Saad and M. Sosonkina. Non-standard parallel solution strategies for distributed
sparse linear systems. In A. Uhl P. Zinterhof, M. Vajtersic, editor, Parallel Compu-
tation: Proc. of ACPC’99, Lecture Notes in Computer Science, pages 13—27, Berlin,
1999. Springer-Verlag.

